Inter-IISER Chemistry Meet (IICM 2017)

Effect of Guest Cations on the Ferroelectric Polarization Attributes of Supramolecular Metal-Organic Cavitand

Anant Kumar Srivastava, and Ramamoorthy Boomishankar* Department of Chemistry, IISER Pune, Maharashtra, INDIA (E-mail: aksrivastava@students.iiserpune.ac.in; boomi@iiserpune.ac.in)

Abstract:

Supramolecular metal-organic assemblies have gained recent attention as ferroelectric materials due to their synthetic simplicity, flexibility and ease in device fabrication.¹ Nevertheless, synthesis of such metal-organic based ferroelectrics is still challenging because of the strict requirement of a noncentrosymmetric polar packing arrangement. The noncentrosymmetric arrangement of dipoles in ferroelectric metal-organic and hybrid organic-inorganic materials can be easily induced by simple chemical modifications like nature of metal-ligand interactions, choice of cations and anions and the extra-framework molecules present in them. Noticeably, we have synthesized dipodal ligands based on phenyl phosphonic diamide backbone, PhPO(NHPy)₂ [Py = 2-pyridyl (L^1) or 3-pyridyl (L^2) or 4pyridyl (L³)], that can generate both centrosymmetric and noncentrosymmetric $\{M^{II}L_2\}_n$ based metalorganic assemblies.^{2,3} Herein, I will discuss the synthesis and ferroelectric properties of two noncentrosymmetric cavitands $\{M^{II}L_2\}_4$ (M=Ni, Co) built on the phosphoramide ligand L^2 , PhPO(NH³Py)₂. The intrinsic cavity of the cavitands can encapsulate hydrated alkali metal cations, ranging from Li⁺ to Cs⁺ ions. Additionally, the guest-free and guest-encapsulated cavitands exhibit a well-saturated loop with high remnant polarization (P_r) ranging from 27 to 30 μ Ccm⁻² with marginal variations in the coercive field (E_c) values. Interestingly, the ferroelectric fatigue measurements on all these systems show ample variation, as the cavitand with least polarizable Li^+ ion exhibits maximum (fatigue) tolerance whereas the most polarizable Cs^+ ions showing up to 35% loss in the P_r values, after 10⁵ switching cycles. These observations highlight the importance of host-guest ferroelectric systems and effect of supramolecular interactions on the polarization attributes.

References and Notes:

- 1. Tayi, A. S.; Kaeser, A.; Matsumoto, M.; Aida, T.; Stupp, S. I. Nature Chem. 2015, 7, 281-294
- Srivastava, A. K.; Praveenkumar, B.; Mahawar, I. K.; Divya, P.; Shalini, S.; Boomishankar, R. Chem. Mater. 2014, 26, 3811–3817
- 3. Srivastava, A. K.; Divya, P.; Praveenkumar, B.; Boomishankar, R. Chem. Mater. 2015, 27, 5222-5229